std::pow(std::complex)
From cppreference.com
Defined in header
<complex>
|
||
template< class T >
complex<T> pow( const complex<T>& x, const complex<T>& y); |
||
template< class T >
complex<T> pow( const complex<T>& x, const T& y); |
||
template< class T >
complex<T> pow( const T& x, const complex<T>& y); |
||
template< class T, class U >
complex</*Promoted*/> pow( const complex<T>& x, const complex<U>& y); |
(since C++11) | |
template< class T, class U >
complex</*Promoted*/> pow( const complex<T>& x, const U& y); |
(since C++11) | |
template< class T, class U >
complex</*Promoted*/> pow( const T& x, const complex<U>& y); |
(since C++11) | |
Computes complex x
raised to a complex power y
with a branch cut along the negative real axis for the first argument.
(since C++11)Additional overloads are provided for all arithmetic types, such that
- 1. If either argument is long double or std::complex<long double>, then both arguments are cast to std::complex<long double>
- 2. Otherwise, if either argument is double, std::complex<double> or integer type, then both arguments are cast to std::complex<double>
- 3. Otherwise, if either argument is float or std::complex<float>, then both arguments are cast to std::complex<float>
Contents |
[edit] Parameters
x | - | base as a complex value |
y | - | exponent as a complex value |
[edit] Return value
If no errors occur, the complex power xy
, is returned.
Errors and special cases are handled as if the operation is implemented by std::exp(y*std::log(x))
The result of std::pow(0, 0) is implementation-defined.
[edit] Example
Run this code
#include <iostream> #include <complex> int main() { std::cout << std::fixed; std::complex<double> z(1, 2); std::cout << "(1,2)^2 = " << std::pow(z, 2) << '\n'; std::complex<double> z2(-1, 0); // square root of -1 std::cout << "-1^0.5 = " << std::pow(z2, 0.5) << '\n'; std::complex<double> z3(-1, -0.0); // other side of the cut std::cout << "(-1, -0)^0.5 = " << std::pow(z3, 0.5) << '\n'; std::complex<double> i(0, 1); // i^i = exp(-pi/2) std::cout << "i^i = " << std::pow(i, i) << '\n'; }
Output:
(1,2)^2 = (-3.000000,4.000000) -1^0.5 = (0.000000,1.000000) (-1, -0)^0.5 = (0.000000,-1.000000) i^i = (0.207880,0.000000)
[edit] See also
complex square root in the range of the right half-plane (function template) |
|
raises a number to the given power (xy) (function) |
|
applies the function std::pow to two valarrays or a valarray and a value (function template) |
|
C documentation for cpow
|